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braid relations 
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Republic of China 
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Abstract. The invariant tangles for Murakami's coloured solution of braid relations are 
explicitly calculated in terms of the Kauffman-Saleur fermionic integral. A more general 
Coloured solution R(c,, e,) of braid group representation is obtained. We verify that such 
R(c, ,cJ satisfies all the redundant conditions presented by Murakami. We thus derive 
invariant Alexander link polynomials for the new coloured solution. 

1. Introduction 

It is well known that besides the standard solutions of braid relation associated with 
the Yang-Baxter equation (YBE) there exists a non-standard family that covers a variety 
of solutions: simple super-extension of standard ones, representation with q at root 
of unity and a continuous parameter, Z ( N )  model-type of solutions of BGR (braid 
group representations), and so on. The corresponding quantum group structures have 
been discussed in [S-111. Here we would like to point out that the super-extension is 
a simple descendant in this family. The simplest one takes the form 

r q  1 

I 9-4-1  1 . 
1 0  

which corresponds to a free fermion model [4,7,16] and leads to a quantum group 
structure with U(1) central element allowed by the quantum double of Drinfeld [IS] 
as shown in 16,111 or in the super form 17,171. Some of the non-standard solutions 
are connected with Alexandar-Conway link polynomials (ACLP) which are invariant 
tangles rather than the closure picture of Jones-Kauhan 116-181. As was discussed 
in [16,17] AcLPcan be computed with the help of either the state model orthe fermionic 
integral for (1.1) through 

- -wA(L)-=(L)z 
K - q  loop 

= q-"i(Ll-e(L) (1.2) 

where e (L)  is the number of positive crossings minus number of negative crossings, 
and rot(L) denotes the number of [61 minus the number of [a] in splitting a crossing. 
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The matrix A in (1.2) comes from 

= dP+ .dl 

where the propagator part .dp and vertex part .dl are given by 

&= z *L*j,@ (a, B = U, d )  
oriented edge 

ij 

& I =  z q(*, ,*r ,+*~d*ti)+(q2-l)*td*j" 
POlif iVC 
CTOJSing 

(1.4) 

Here we denote an over-crossing by U and an under-crossing by d as shown by figure 1. 
d y" "yd 
\ /  

Figure l., d d 

Following the rule given by Kauffman and Saleur [16,17], a typical propagator 
starting from crossing point i and ending at j is illustrated by figure 2. 

It is shown that for a diagram in calculating ACLP with (1.1) the fermionic integral 

et(A). (1.6) 
A naturally coloured extension of (1.1) is proposed by Murakami in [19,20]. The 

formulation is equivalent to the state model in [16]. The result is 
v - -rotlrl-=<L) d r - 4  

coloured solution has the form 

1 

where t ,  and t2 are colour-dependent parameters corresponding to colour c, and c,, 
respectively. Since the structure of the state expansion of (1.7) is the same as that of 
(1.1) except for the different coefficients, we expect that the fermionic integral computa- 
tion should give the same result derived by the state model which coincides with the 
discussion of Murakami on 'redundancy' for (1.7). 

In this paper we study ACLP of a non-standard family by a variety of approaches. 
We first calculate ACLP relating to (1.7) by carrying out the fermionic integral to rederive 
the result as given in [17]. So far there is no such explicit verification. Next we 
obtain a new coloured solution of BGR that is more general than (1.7). We obtain all 
the 'redundant conditions' of Murakami for the new solutions by direct calculations. 
Hence we immediately establish its invariant tangle picture, i.e. namely its ACLP is well 
defined and with more parameters. 
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2. Free fermiooic integral for coloured solution of SU(1,l) 

An ACLP is a kind of special link with one strand being open or detached. In order to 
discuss the coloured case, let us first restrict ourselves to take the non-coloured case 
into account, which will be useful for later discussions. We put the following propo- 
sition: 

The fennionic integral (1.2) [16] associated with (1.1) possesses the Reidmeister moves 
type I, I1 and 111 when the following diagrams are connected with any other complicated 
blocks. 

(I) For type I (figures 3 and 4) we have 
v',=v,. 

Proo$ For figure 3 we 'have 

dl ='d' + $!d + $:d $ 1 ~  + $!s $!@ + ( $ d i u  + $!d$:d) + (4' - 1) $Td $!U (2.2) 

dz = d'+ (2.3) 

whereas for figure 4 

where d' stands for the other part connected with ja and kp shown in figures 3 and 
4 by the hatched blocks.~The corresponding matrices AI and A, in (1.3) are given by? 

A,: Az: 

iu q -q - 

iu id . . . ja ... ja 

id 4 -1 Fl ;-q 
kp -1 

where the unwritten elements are zero and matrix Ai differs from A: only in the 
indicated elements (0 in A: and -1 in A;). By the manipulations that id-row x q + iu-row 
and iu-rowx q+ kp-row it is easy to verify that 

(2.4) 

since under such manipulations the element 0 in  the^ & becomes -1 and hence two 
matrices A: and A; become the same: 

e(L,)=e(L,)+l rot(&) =rot(&)+ 1. (2.5) 

det AI = q2 det AZ 

t AI and A; are matrices corresponding to other parts. Note that sl is the same but A: and A; are.no longcl 
the same because of the definition of A (1.4). 
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Therefore we get 
v - -Wt(L,)-dL,) detA - - d & ) - e [ L z )  det A -v  4 - 4  1-4 2-  L2. 

The inverse-oriented diagram possesses the same property. 

(11) For the unitarity of type I1 (figures 5 and 6) we have 

A2: . 
... ia ... ky 

By making a series of manipulations such as md-row x q+jp-row, . . . the elements 0 
in the matrix A: become -1 which is the same as Ai in AZ and the relation is found 

det A, = det A2 

e(L,)=e(LJ+l-l=e(&) 

rot(L,) =rot(&). 
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For the tangled cross-channel unitarity of type I1 we have (for simplicity the rest 
part is omitted) ' 

d = $Jd$td + $$$iw + $:rt$! ' 

+ q-'(@iu$!u + & d $ ! d ) + ( q - 2 -  l)$'fd$jliu 

+ d$)u$Jw + @jd$Jd) + (q2 - l) $;a $ju 

/ ~Q 
I iu id j u  jd  

and 

&2 = d + $:e $iw + $:U $ju + $!"ha'+ $&$id +~$!d $ku + $;U $m'@' 

~ + $Ly$jd + $Jd$!d + $$$v*y'+ q($iu$!u + $id$!d) + (4'- l)$:d$ii. 

+ q(@j&!u + $jd$!d) + (4'- l)$!d$Ju + q($k.*.$.tkv+ $!d$!d) 

+ (q2- I f + $ $ k u .  

The corresponding matrices Al and AZ can be tabled. Omitting the details we obtain 

detA,=detA,, e (L , )=e (Ld  

rot(&) =rot(Lz) (2.9) 

v,=v,. 
Therefore the proposition is proved. 0~ 

It is worth noting that the above properties are guaranteed by the structure of state 
expansions and do not depend on the coefficients before in the state expansions if the 
braid relation is satisfied. This is the point of the consistency between the state model 
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and fermionic integral. Moreover, the coloured solution (1.7) possesses the same state 
decomposition as for (1.1). The difference is only in the coefficients. If we follow 
[16,21] by using a dashed line to denote the boson (spin +) and a solid line for the 
fermion (spin -), i.e. 

+ + +  - +  - -  
\.. ,A\ /' x >( 2 -j( 
+ + +  - -  + ' +  - -  - 

then for (1.7) we have the state expansion 

c, c7 

where ti = t., ( i  = 1,Z) are colour dependent parameters. Based on the state expansion 
we immediately know that the fermionic integral formulation is still valid for the 
solution (1.7). Keeping in mind 

1. 

v B =  II tz;,,, (i: colour index) (2.10) 
1-1 

where 
N 

A 
n Boltzmann weights fermion loop 

cmasing 
Zf0Op=C (-1) 

and A is the loop configuration, open last strand, carrying a bosonic or fermionic state, 
and N is the number of strings of coloured braid corresponding to a certain line. 

The coloured fermionic integral is given by 
r 

zfwp- J d@ d@' expW(c)) (2.11) 

where IJ and IJt have the same meaning as in the non-coloured case. Again 

d(c)=dp+d1(c)  

where the propagator part dp  is the same as the non-coloured one shown by (1.4). 
The major difference is in the interaction part &,(e) because for the coloured case we 
have to distinguish between down-colour and up-colour parameters; for example 

CI 
c, : down colour 2 c,: up colour. 

c2 Cl 
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To simplify notation one denotes by 

t$ = ti"' t y  = t y ' .  

In wmvarison to the non-coloured case we factor out 

-ring crossing 

By parallelizing the same arguments of Kau5nan-Saleur, the coloured counterpart 
d I ( c )  of dI takes the form 

d I ( C )  = {t:'$i;d@Td+ ty@;"@T"+ t'."'(tZ'- r:)-')@&"} 

+ 2 { t ' , " ' - ' @ ~ @ $ + t ( . d ) - l @ ; " ~ R + t ( . u ) - l ( f : ) - ' -  t%))@L@;J. 
pmitiue 
crassins 

"cgative 
"sing 

We, thus have 
d ( c )  =&P+ &de) @iA%,jo@Jo 

where A' is a 2n x2n matrix where n is the number of crossing points and 

(2.12) 
crDBIing erasring 

To emphasize the consistency between the state model and the fermionic integral 
formulation explicitly in the coloured case we list some results for Z& calculated by 
the state model and the path integral independently 

Z L  

I pafh integra I same I 
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Hence we obtain 

det(A(c))= t2(t2-t;') 

z;,,= f;'(t2-t;1). 

To conclude this section we would like to point out that for the simple coloured 
solution (1.7) the coloured state gives the same tangle picture in accordance with the 
discussion on the redundancy in [19,20] based on the Markov trace. Because the 
solution (1.7) is not unique a new family of solutions of 

(2.13) 

can be derived [22]. It is natural to set up ACLP for such new solutions. In the next 
section we first obtain more a general solution with colours and then establish their 

P)Rz(A, Y )RIAH U )  = R A P ,  v)R,dA, v)Rz(A, p)  

- 
invariant tangle through proving the redundant conditions proposed by Murakami 
[19,20]. 

3. New non-standard solutions of the coloured braid group 

To extend solution (1.7) we substitute into (2.13) the following matrix form 

R(A,P)=C ua(A,~L)&aB&a+w(A, PIE-& -&OE+*+4 
a 

+ c P'4b'(A, pL)Eab@Eba (3.1) 

where a, b may be +f or -4, and A and p are colour parameters. Unknown colour- 
dependent parameters U&, p), ~ ( % ~ ) ( h ,  p)  and W(A, p)  are to be determined by 
substituting (3.1) into (2.13). 

e e b  

After calculation we derive the following solution 

and $(A, p)  satisfies 

(3.4) 1 . 0  W , p ) G ( p ,  v)={q-q- t ,J,}W, v ) .  

The details of the calculations can be found in [22]. It can also be checked directly. 
By defining 

$(A, IL) = tZW(A, P )  

q-:t; = ti q(t;)- '= t i 1  q(tf) =s,' 

q ( t y  = sr 
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and dispensing with the trivial factor tf we get 

A particular solution of (3.6) is 

W(A, p) = (tJ't,(f,-S,J: (3.7) 
If R(A, p) is a solution, so is R( p, A). Therefore ( R (  
(2.13), namely, 

A))-' should be a r;olution of 

(3.8) 

where we have taken 7 = 1. It can be checked out that (3.8) is really a solution of 
(2.13). In (3.8) colour-dependentparameters f l ,  t2 ,  s1 and~~arefreeparametersinstead 
of t,, s, for later convenience in a discussion of the n-colour case. Obvioiisly this is 

of [ 191. 
~ ~ a more general solution than (1.7). When s = f;' and s = f+', it retums to the solution 

4. ACLP for extended coloured solution 

Following the general arguments of the Markov trace [19,23], in order to establish 
ACLP associated with our new solution, we first present an enhanced YB operator in 
our case. For (3.8) we iind that the necessary entries h, R(c , ,  c2), m ( c )  and p(c)  satisfy 
the following properties: 

where Tr2 means that trace is taken in the second space only and leaves the first space 
free. The multivariable polynomial for a coloured link b is then given by 

a ( c )  =(f+,)1'2 P ( c )  = ( S I t ; y  (4.5) 

where W(')(b) denotes the number of crossings in b such that the strings of over-path 
and under-path are both coloured by c. B is the closed braid form of b and composed 
of an R(ci, cl) operator due to the Alexander theorem. Unfortunately the general 
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formula (4.6) leads to a trivial result for any links since tr(h) = 0. To avoid this triviality 
we should discuss the redundant conditions needed for constructing ACLP, namely we 
should look for the su5cient conditions for the existence of invariant tangle associated 
with solution (3.8). 

B>+-'" is the coloured braid group formed by n coloured strings separated by colours 
cl, c,, . . . , c. in which some of the colours may happen to be the same. 

Tr.(B) ( V B E B > ~ ~ - ~ ~ )  means that we take trace of B in the nth (right-most) space 
only where B is defined on Vel@ VSQ . . .Q V'm. 

First we introduce several notations: 

Tr,,(B) = Tri(Tri+l,. . . (Tr.(B) . . .). . .) ( i < n ) .  (4.7) 

Note that 

V(b)-Tr(B(hQ h. .  . Oh)) 
=TrJB(hOh.. .Oh))  
=Trl(h Tr,,,(B.(I@h@. . .@h))) 

so that if Tr,,(B(IO h . .  .Oh)) is a scalar matrix (number times the unity matrix) then 
the triviality occurs for Trl (h scalar) = 0 VB E B>-'" and can then be separated by 
taking out the redundant trace Trl(h) itself. Such R(cl, c,) is called redundant [19,20]. 
If R(c,, c,) is redundant then the scalar of Tr(B(IQhC3.. .Ob)) is invariant of link 
to some factor. 

In this section we shall prove that our general solution (3.8) is redundant. 
First we introduce some further notation. Define 

(4.9) 

Note that r ( c l ,  6) thus defined has two eigenvalues 

r ( c I ,  e,) + r -Ycl ,  cz) = ( t l t2+  sIs2) (4.10) 

and taking the above definition into account by parallelizing [ 191 we derive the following 
results concerning the redundant conditions: 

(1) 1-string case: 
E;' is generated by identity 1. 

(2) 2-string case: 
B$'> is generated by I, r(cl, c,) due to (4.10). 
Tr2 r( cl ,  c,) =scalar I and I, r( c1,  c2) also serve the basis of B2'>, 

(3) 3-string case: 
(a) I, r l ,  r,, rlr2, r,rl, and r1r2rl serve the basis of B2'2'3. They are independent. 

(b) Other combinations of rl and r,, for example, rzrlrz. After lengthy calculations 
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we have 

(tlt2- s l s ~ ) r ~ r ~ r ~  - (t283 - S Z S ~ ) ~ I ~ Z ~ I  

= tZs2(tls3- t3sl)(rlri+ rZrJ 
+ t2s2( tl s2 t3s3 - tl s2s: - tl t2t: + s1s2s: - t2t3sl i3 + t2t:s1) rl 

+ t2s2(t:t2t3-t:t2s3+ tltZSlS3- tlt3sls2-s:s2s3+ t3s:s2)r2 
+ tis$( t1 -SI)( t 3 -  s3)(81't3 -s3t1). 

In the following we explicitly verify the statement (a). 

(c) c = el = c2 = c3 (non-coloured case). 

B is generated by I, R(c, c)@I, I @ R ( c ,  c) 
R'(c, C) (t-s)R(c, c)+ ts (4.11) 

By recalling R(c, c b  R(c, c ) / f i ,  q =- which is nothing but the skein relation of 
Jones type. 

(d) c1 = c2 # c, (and c1 # c2 = c3 is similar). 

B>'zC3 ~ is generated by I, R(cl,cl)@I, I ~ r ( c 1 , ~ ) = r 2 ~ ( c 1 , c l ) =  
-1 2 ( t 1 - d  R ( ~ 1 ,  cl) - tisi(ti -si)-'. 

(e) cl=c3# %. 

B;IcZE1 is generated by I, rl, r2 and (R(c,, c2)@I)(I@R(c,, cl)((R(cl, c2)-'@I), but 
but we have (A= t h -  tlsls2+s:s3): 

(R(ci 9 cz)@ R(ci 9 ci)((R(ci, ~2)-'@1) 

s1s2- tlf2 (sz- tZ)(t,tl-sls,) 
tlS2 - t2s1 + . rl - tlSl(t2 - 82) - 

t:t2+ s:s2 t ,  t:+ s,s: + 
(t2-s2)A r2+ tzsz(s2- t2)A r1r2 

(f) cl # c2, cz# c3 and c1 f c3. 

(4.12) 

(4.13) 
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where 
A ' = ( t i t z - ~ i ~ z ) ( ~ z - t 2 ) .  

Summing up the above calculations we have proved that the bases of B35'3 are I, 
rl,  r,, rlrz, rzrl, rim. 

It is worth noting that in such six-basis a non-trivial operation defined on third 
(right-most) space V s  is r, which occurs at most once, say, zero time for I, r l ,  one 
time for rlrz,rz, rlrl, rlrzrl. Taking the fact that Tr2(r(cIrcl)(10h))=scalar into 
account we obtain 

Tr3(B(IOIOh))  E B;ICI V B  E B p .  (4.14) 

(g) A similar procedure can be applied to the n-string case in terms of reduction. It 
has been proved in [19,20] that 

(4.15) 

namely, three neighbouring strings generate the general properties of n-strings for a 
Yang-Baxter system. 

Tr. (B( IO  IO.  . .8 h ) )  E E2+-1 V B  E B$-% 

(h) Summing up the above discussions we conclude that 

Tr..,( B ( I 0  h 0. . .Oh)) E B;' (4.16) 

which is a scalar, namely R(cI, c2) is redundant. We then can leave one string to be 
opened and close other strings to form an invariant tangle. The final form of the 
invariant is given by 

V'(b )=( t , - s , ) - '  w'l(b))( k-1 p~l)Tr,,,z(B(IOhO. . .Oh)). (4.17) 

For illustration we give some examples 

m 

Cl c2 

V'= (tlt2s2/sl)"Z 
4 

(4.18) 

(4.19) 

(4.20) 

In the above examples the subindices 1,2 and 3 of parameters t and s correspond 
to colours c1, c, and c,, respectively. 

5. Conclusions 

It is well known that for standard solutions of the braid relation within the six-vertex 
model, the state model of K a u h a n  is universal in constructing link polynomials 
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equivalent to the Markov trace approach. For some non-standard solutions the invariant 
tangle should be studied. Obviously not all complicated tangles with incomhg index 
a and outgoing index b turn out to be 8: scalar. It does occur in the case where taking 
trace in the first (left-most) space is redundant. Of course, redundant conditions are 
stringent and model dependent. For some models the state model is established for 
invariant tangles and turns out to be equivalent to the 'redundancy' picture. 

In general the proof of satisfaction of redundancy is lengthy and strongly model 
dependent. The translation of the language of Markov trace to the state model is also 
model dependent. From a practical point of view, we could say that the invariant 
tangle~(AcLP) theory is still at the beginning. 

Before ending this section we would like to make some remarks. 
(1) Not all super-solutions of BGR should receive a tangle picture. For instance, 

for non-standard solutions associated with E( n) the link polynomials are still 'standard'. 
Only for C ( n )  and D(n)  should it be dealt with as an invariant tangle. Such solutions 
come from the reducibility of the Birman-Wenzl algebra. This problem has been solved 
since we can prove that any R-matrix satisfying BW algebra is always redundant. 

(2) Another example is the non-standard solutions associated with spin model 
recently discussed in [25]. We can prove that the 9 x 9  solution is definitely not a BW 

algebra but is redundant [26]. 
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